
Security Assessment

Hawksight
CertiK Verified on Sept 28th, 2022

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning

of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

4 Major 2 Resolved, 2 Mitigated
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

3 Medium 3 Resolved
Medium risks may not pose a direct risk to users’

funds, but they can affect the overall functioning of a

platform.

6 Minor 6 Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient

than other solutions.

16 Informational 13 Resolved, 2 Partially Resolved, 1 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to

fall within industry best practices. They usually do not

affect the overall functioning of the code.

SUMMARY HAWKSIGHT

CertiK Verified on Sept 28th, 2022

Hawksight

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Staking

ECOSYSTEM

Solana

METHODS

Manual Review, Static Analysis

LANGUAGE

Rust

TIMELINE

Delivered on 09/28/2022

KEY COMPONENTS

N/A

CODEBASE
https://github.com/hawksightco/hs-dapp/tree/dev/programs/index-yield-

farming/src

...View All

COMMITS
36c4577b5ec60ffdec38690ea79d84a940ce5238

...View All

29
Total Findings

24
Resolved

2
Mitigated

2
Partially Resolved

1
Acknowledged

0
Declined

0
Unresolved

https://github.com/hawksightco/hs-dapp/tree/dev/programs/index-yield-farming/src

TABLE OF CONTENTS HAWKSIGHT

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

GLOBAL-01 : Program Upgrade Centralization Risk

GLOBAL-02 : Lack of Tests

LIR-01 : Centralization Related Risks

PRC-01 : Lack of Authentication for `create_state`

PRC-02 : Incorrect `bump` Implementation

PRC-03 : Use `create_miner_v2 ` Instead of `create_miner`

PRC-04 : Missing `Action` Check

PRC-05 : Staked and Unstaked Amounts Can Become Inconsistent

SRI-01 : Lack of Length Check for `weights` and `remaining_accounts`

SRI-02 : Terra's UST Should not be Used as a Stable Coin

SRI-03 : Missing Validation for `FarmRewardInfo::update` and
`ChangeTokenPerSecondMulti::change_token_per_second`

SRI-04 : Lack of `Asset` Length Limit Check

SRI-05 : Lack of Mint Validation for User Token Accounts

COE-01 : Reduce the Use of `std:mem:size_of()`

COE-02 : Typo

LIR-02 : Incorrect Use of '_' Syntax for Unused Variable

PRC-06 : Simplified Implementation of `index` in Loop

PRC-07 : Add non-zero Check for `total_weight`

PRC-08 : Third Party Dependencies

PRC-09 : `last_amount` Not Reset to Zero

SRI-07 : Unnecessary `&` Reference

SRI-08 : Unnecessary Conversion to the Same Type

SRI-09 : Remove Commented Code

SRI-10 : Unnecessary Account

TABLE OF CONTENTS HAWKSIGHT

STT-01 : Simplifiable `require` Operation

UTL-01 : Unnecessary `return` Statement

UTL-02 : Unused Variable

UTL-03 : Unnecessary Re-slicing

UTL-04 : Optimize `creator_fee` Calculation for Improved Precision

Optimizations

SRI-06 : Removal of Unnecessary Checks for Computing Budget Optimization

Appendix

Disclaimer

TABLE OF CONTENTS HAWKSIGHT

CODEBASE HAWKSIGHT

Repository

https://github.com/hawksightco/hs-dapp/tree/dev/programs/index-yield-farming/src

Commit

36c4577b5ec60ffdec38690ea79d84a940ce5238

CODEBASE HAWKSIGHT

https://github.com/hawksightco/hs-dapp/tree/dev/programs/index-yield-farming/src

AUDIT SCOPE HAWKSIGHT

8 files audited 1 file with Acknowledged findings 5 files with Partially Resolved findings 1 file with Mitigated findings

1 file with Resolved findings

ID File SHA256 Checksum

PRC
programs/index-yield-farming/src/pro

cessors.rs

815589645a3b52e685755cb3e973d4a751db7ddc5538a257e3f

3c016d8659d76

COE
programs/index-yield-farming/src/co

ntexts.rs

93266b5735d9e7b77380fe0c798b0e5d25b314944afa625ad24a

4504e065643a

ERO
programs/index-yield-farming/src/err

ors.rs

b62823f442ba3fb07716907966daa5e6f0ebafb178015b393953d

ff010edff9f

EVN
programs/index-yield-farming/src/ev

ents.rs

0cd5be85a232eb763adce63763fe1ae51999b74a1a4c4ac33180

5abe2c45a0b6

LIR
programs/index-yield-farming/src/lib.

rs

961a01b321e608cde60ad84822b80938544606acdfe5455df185

90c7ca41437a

STT
programs/index-yield-farming/src/sta

tes.rs

8006e4959bc2c75ef2d99430721517ec2f66535c337d9c13c812

4e99d0fe7a26

UTL
programs/index-yield-farming/src/util

s.rs

6edf9d9eb63b3ec548914493a2fa48a9c1acafc750b21f0b15c3e

5f1cd0ec14a

COS
programs/index-yield-farming/src/co

nstants.rs

c1e2d335a73dc7cf04159ddc2d1481d26e1c254bdb083580ec9e

e95884aeed7b

AUDIT SCOPE HAWKSIGHT

APPROACH & METHODS HAWKSIGHT

This report has been prepared for Hawksight to discover issues and vulnerabilities in the source code of the Hawksight

project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices.
We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS HAWKSIGHT

FINDINGS HAWKSIGHT

This report has been prepared to discover issues and vulnerabilities for Hawksight . Through this audit, we have uncovered

29 issues ranging from different severity levels. Utilizing Static Analysis techniques to complement rigorous manual code

reviews, we discovered the following findings:

ID Title Category Severity Status

GLOBAL-01 Program Upgrade Centralization Risk
Centralization

/ Privilege
Major Mitigated

GLOBAL-02 Lack Of Tests Coding Style Major Resolved

LIR-01 Centralization Related Risks
Centralization

/ Privilege
Major Mitigated

PRC-01
Lack Of Authentication For

create_state
Logical Issue Major Resolved

PRC-02 Incorrect bump Implementation Logical Issue Minor Resolved

PRC-03
Use create_miner_v2 Instead Of

create_miner
Logical Issue Minor Resolved

PRC-04 Missing Action Check Logical Issue Minor Resolved

PRC-05
Staked And Unstaked Amounts Can

Become Inconsistent
Logical Issue Minor Resolved

SRI-01
Lack Of Length Check For weights

And remaining_accounts
Volatile Code Medium Resolved

SRI-02
Terra's UST Should Not Be Used As A

Stable Coin
Logical Issue Medium Resolved

FINDINGS HAWKSIGHT

29
Total Findings

0
Critical

4
Major

3
Medium

6
Minor

16
Informational

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660034823985
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660034918195
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660902330972
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660623050820
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659524878001
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660585866970
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660671432328
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660816904752
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660032902097
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660797037160

ID Title Category Severity Status

SRI-03

Missing Validation For

FarmRewardInfo::update And

ChangeTokenPerSecondMulti::change_t

oken_per_second

Control Flow Medium Resolved

SRI-04 Lack Of Asset Length Limit Check Logical Issue Minor Resolved

SRI-05
Lack Of Mint Validation For User Token

Accounts
Logical Issue Minor Resolved

COE-01 Reduce The Use Of std:mem:size_of()
Language

Specific
Informational Resolved

COE-02 Typo Coding Style Informational Resolved

LIR-02
Incorrect Use Of '_' Syntax For Unused

Variable
Coding Style Informational Partially Resolved

PRC-06
Simplified Implementation Of index In

Loop
Coding Style Informational Resolved

PRC-07 Add Non-Zero Check For total_weight Logical Issue Informational Resolved

PRC-08 Third Party Dependencies Volatile Code Informational Acknowledged

PRC-09 last_amount Not Reset To Zero Coding Style Informational Resolved

SRI-07 Unnecessary & Reference Coding Style Informational Resolved

SRI-08
Unnecessary Conversion To The Same

Type
Coding Style Informational Resolved

SRI-09 Remove Commented Code Coding Style Informational Partially Resolved

SRI-10 Unnecessary Account Coding Style Informational Resolved

FINDINGS HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1661282650506
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660711829597
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1661001701767
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659526259001
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660587580133
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1661341064501
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659437669506
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660584222726
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660584515651
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660879458316
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659436529673
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659437903932
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659517695038
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660582356519

ID Title Category Severity Status

STT-01 Simplifiable require Operation Coding Style Informational Resolved

UTL-01 Unnecessary return Statement Coding Style Informational Resolved

UTL-02 Unused Variable Coding Style Informational Resolved

UTL-03 Unnecessary Re-Slicing Coding Style Informational Resolved

UTL-04
Optimize creator_fee Calculation For

Improved Precision
Logical Issue Informational Resolved

FINDINGS HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659437376987
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659435480945
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659435758607
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659436997725
https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660586498944

GLOBAL-01 PROGRAM UPGRADE CENTRALIZATION RISK

Category Severity Location Status

Centralization / Privilege Major Mitigated

Description

A Solana program can be deployed on the mainnet as:

final: the code cannot be updated.

upgradable: BPFLoaderUpgradeable needs to be set as the program owner and an upgrade authority , which is

a user account, is given.

In case the Hawksight program is deployed as upgradable, the upgrade authority has the privilege to update the

implementation of the program at his/her will.

Any compromise to the upgrade authority account may allow a hacker to take advantage of this authority and control the

implementation of the program and therefore execute potential malicious functionalities in the program.

Recommendation

Our recommendation depends on the team's intentions that we invite to clarify.

If the Hawksight program is going to be deployed as final, no further actions are needed to address the finding.

Otherwise, we recommend that the team make efforts to restrict access to the private key of the upgrade authority

account. A strategy of combining a time-lock and a multi-signature (⅔, ⅗) wallet can be used to prevent a single point of

failure due to a private key compromise. In addition, the team should be transparent and notify the community in advance

whenever they plan to migrate to a new implementation contract.

Here are some feasible short-term and long-term suggestions that would mitigate the potential risk to a different level and

suggestions that would permanently fully resolve the risk.

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness of privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

being compromised;

AND

GLOBAL-01 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660034823985

A medium/blog link for sharing the timelock and multi-signers addresses information with the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock and multi-signers addresses, and DAO information with the public

audience.

Permanent:

Deploying the program as final can fully resolve the risk.

Note: we recommend the project team consider the long-term solution or the permanent solution. The project team shall

make a decision based on the current state of their project, timeline, and project resources.

For remediation and mitigated status, please provide the following information:

Provide the account address with ALL the multi-signer addresses for the verification process.

Provide a link to the medium/blog with all of the above information included

Alleviation

[Hawksignt] : We have just migrated our upgrade authority to a multi-sig, can verify from our program address where the

upgrade authority is a multi sig account owned by the governance program. We are currently using Realms as our multi sig

interface and we've implemented 24 hour time lock for the contract upgrade authority via tx .

GLOBAL-01 HAWKSIGHT

https://app.realms.today/dao/3CGxeUEBwNfkr7UX6Ej77MMZzGkpNpf9bXWwkiM2aAXZ
https://explorer.solana.com/tx/61FmzaHPqhVNrQ4WhfsumL5euzYCdD3RJrHSgMRsgcLCheMoyEL4eQsAkbeGB32znbWx9Cdm628VfGDGf9YdxgUs

GLOBAL-02 LACK OF TESTS

Category Severity Location Status

Coding Style Major Resolved

Description

The unit tests here are not enough. Testing programs are a very important aspect of proving program correctness,

preventing regressions, and release engineering. Without tests, there is no way to know if the program works as expected.

The fact that code was shipped for review with such major flaw, is considered a signal of some problems with release

engineering procedures, which may lead to shipping not intended changes to production.

Recommendation

We recommend adding exhaustive tests to the project, including edge cases, non-happy paths, and error conditions. This

can include, but is not limited to:

Unit tests

Integration tests

Behavioral tests

Stress tests

CI/CD pipelines various program use cases with unit-tests and integrating tests into CI/CD

Alleviation

[Certik] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

GLOBAL-02 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660034918195

LIR-01 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization / Privilege Major programs/index-yield-farming/src/lib.rs: 63, 70 Mitigated

Description

In the contract lib.rs , the role authority has authority over the following function:

change_multi_index_farm_rate(): change the speed at which farms generate rewards;

create_saber_farm_strategy(): add a new strategy.

Any compromise to the privileged accounts may allow a hacker to take advantage of this to update project configurations.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multi-signature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different level in terms of

short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

LIR-01 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660902330972

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement;

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles;

OR

Remove the risky functionality.

Alleviation

[Hawksignt] : We are currently using Realms as our multi sig interface and we've implemented 24 hour time lock for the

contract upgrade authority via tx .

LIR-01 HAWKSIGHT

https://app.realms.today/dao/3CGxeUEBwNfkr7UX6Ej77MMZzGkpNpf9bXWwkiM2aAXZ
https://explorer.solana.com/tx/61FmzaHPqhVNrQ4WhfsumL5euzYCdD3RJrHSgMRsgcLCheMoyEL4eQsAkbeGB32znbWx9Cdm628VfGDGf9YdxgUs

PRC-01 LACK OF AUTHENTICATION FOR create_state

Category Severity Location Status

Logical Issue Major programs/index-yield-farming/src/processors.rs: 22~35 Resolved

Description

The create_state function is designed to initialize a globally unique state account. This state account will be used to

identify the project owner and to ensure that only the owner can create a strategy and set the token_per_second of the

farm.

pub struct CreateState<'info> {

 #[account(

 init,

 seeds = [b"state".as_ref()],

 bump,

 payer = authority,

 space = 8 + size_of::<StateAccount>()

)]

 pub state: Account<'info, StateAccount>,

 ...

}

pub fn create_state(&mut self, bump: u8) -> Result<()> {

 let state = &mut self.state;

 state.authority = self.authority.key();

 state.bump = bump;

 state.reward_mint = self.reward_mint.key();

 state.reward_vault = self.reward_vault.key();

 emit!(StateCreated {});

 Ok(())

 }

Any given program_id can only have one state account. This may allow malicious users to pre-empt the creation of

state by posting create_state transactions first, thus making the program unavailable.

Additionally, if a malicious user manages to call create_state prior to admin of the program, the malicious attacker would

then have a parallel running program who's state is controlled by them. The user could use this to impersonate the real

program to exploit users.

Recommendation

PRC-01 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660623050820

We recommend adding authentication to the create_state function to ensure the account is being created by the

expected entity.

Alleviation

[Certik] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

PRC-01 HAWKSIGHT

PRC-02 INCORRECT bump IMPLEMENTATION

Category Severity Location Status

Logical Issue Minor programs/index-yield-farming/src/processors.rs: 27, 121, 191, 220 Resolved

Description

By adding an empty bump constraint to the #[account(...)] macro, you signal Anchor to find the canonical bump on its

own for the initialization of the account. The user defined bump will be written to storage, but will not be used for account

initialization.

pub fn create_state(&mut self,

 bump: u8,

) -> Result<()> {

 ...

 state.bump = bump;

 ...

 }

Anywhere that the storage state.bump is used will result in incorrect validation of account addresses.

Reference material on bump creation can be found here and here

Recommendation

We recommend following the Anchor standard patterns for handling bumps.

Alleviation

[Certik] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

PRC-02 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659524878001
https://docs.rs/anchor-lang/latest/anchor_lang/context/struct.Context.html#structfield.bumps
https://www.anchor-lang.com/docs/pdas
https://www.anchor-lang.com/docs/pdas#using-pd-as

PRC-03 USE create_miner_v2 INSTEAD OF create_miner

Category Severity Location Status

Logical Issue Minor programs/index-yield-farming/src/processors.rs: 254~267 Resolved

Description

The QuarryProtocol provides create_miner to initialize the miner. However, since the current create_miner still requires

bump for initialization, QuarryProtocol provides a more standardized create_miner_v2 to replace create_miner .

create_miner(CpiContext::new(

 self.quarry_mine_program.to_account_info(),

 CreateMiner{

 authority: self.user.to_account_info(),

 miner: self.miner.to_account_info(),

 quarry: self.quarry.to_account_info(),

 rewarder: self.rewarder.to_account_info(),

 system_program: self.system_program.to_account_info(),

 payer: self.authority.to_account_info(),

 token_mint: self.lp_mint.to_account_info(),

 miner_vault: self.miner_vault.to_account_info(),

 token_program: self.token_program.to_account_info(),

 }).with_signer(&[&authority_seeds[..]]),

 miner_bump)?;

Recommendation

The more recent version, create_miner_v2 , of the create_miner function includes additional functionality, in that, there is

no need to supply bump .

/// The V2 variant removes the need for supplying the bump.

 #[access_control(ctx.accounts.validate())]

 pub fn create_miner_v2(ctx: Context<CreateMiner>) -> Result<()> {

 instructions::create_miner::handler(ctx)

 }

We recommend considering upgrading to the new version of the function to take advantage of the functionality. Additionally,

under any upgrades of third party libraries, it is important to test the program with the upgraded version to ensure it runs as

expected.

Alleviation

PRC-03 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660585866970
https://github.com/QuarryProtocol/quarry/blob/f41219dd9e60fbabe5494a6dffbbc17dc3778a46/programs/quarry-mine/src/lib.rs#L232
https://github.com/QuarryProtocol/quarry/blob/f41219dd9e60fbabe5494a6dffbbc17dc3778a46/programs/quarry-mine/src/lib.rs#L242

[Certik] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

PRC-03 HAWKSIGHT

PRC-04 MISSING Action CHECK

Category Severity Location Status

Logical Issue Minor programs/index-yield-farming/src/processors.rs: 715, 778 Resolved

Description

According to the logic, Hawksight program forms a complete process in strict accordance with the Action steps. The

project strictly controls the process execution through the inspection of Action .

For example, in supply_liquidity , the function can only be run if the last_action was a SwapAction

pub fn supply_liquidity(&mut self, min_amount_out: u64) -> Result<()> {

 ...

 require!(

 (user_asset_info.last_action == Action::SwapAction as u8)

 || ((user_asset_info.last_action == Action::FundAction as u8)

 && (strategy.token_mint == USDC_MAINNET)

 && ((strategy.src_mint == USDC_MAINNET)

 || (strategy.dst_mint == USDC_MAINNET))),

 ErrorCode::InvalidOperationOrder

);

 ...

However, Action is not verified in stake_to_farm() and unstake_from_farm() function, which may lead to unexpected

errors in cross-step operations.

Recommendation

We recommend adding Action checks to ensure that the process is executed in the correct order.

Alleviation

[Certik] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

PRC-04 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660671432328

PRC-05 HAWKSIGHT

PRC-05 STAKED AND UNSTAKED AMOUNTS CAN BECOME
INCONSISTENT

Category Severity Location Status

Logical Issue Minor programs/index-yield-farming/src/processors.rs: 755, 767, 768 Resolved

Description

In the stake_to_farm() function, the user can stake the LP obtained by adding liquidity to saber_farm to obtain rewards.

 stake_lp_token_pda(

 self.saber_farm_program.to_account_info(),

 self.token_program.to_account_info(),

 user.to_account_info(),

 &self.saber_farm,

 self.user_pda_lp_token.to_account_info(),

 self.saber_farm_rewarder.to_account_info(),

 // Stake full LP token balance of pass through account

 self.user_pda_lp_token.amount,

 // user.asset_infos[asset_index].last_amount,

 authority_seeds,

)?;

However, the stake amount is user_pda_lp_token.amount , but the billed amount is user_asset.last_amount .

 user_asset.amount = user_asset

 .amount

 .checked_add(user_asset.last_amount)

 .unwrap();

If there is an external transaction that transfers the additional LPs to the user_pda_lp_token , this will cause the actual

stake amount to be inconsistent with the billed amount, users cannot get back all staked LPs when unstaking from the farm.

Recommendation

We recommend computing the unstaked user asset amount such that it is consistent with the amount staked, such that any

external transactions to the token liquidity pool won't effect the users account.

Alleviation

[Hawksight] : We have decided to deprecate platform rewards coming from Hawksight. The changes have been

committed in the commit hash <b70e6a8cc80807ac5af92700da6600447242bce7>.

PRC-05 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660816904752

PRC-05 HAWKSIGHT

SRI-01 LACK OF LENGTH CHECK FOR weights AND

remaining_accounts

Category Severity Location Status

Volatile

Code
Medium

programs/index-yield-farming/src/lib.rs: 53~59; programs/index-yield-farm

ing/src/processors.rs: 66~67, 73~76, 125~131
Resolved

Description

In the farm account, the asset_infos array is initialized by weights and remaining_accounts .

mints vector is initialized by iterating over ctx.remaining_accounts .

for mint in _ctx.remaining_accounts.iter(){

 require!(*mint.owner == token::ID, ErrorCode::InvalidMint);

 Mint::unpack(&mint.to_account_info().try_borrow_data()?)?;

 mints.push(mint.key());

 }

asset_size is defined by the length of weights .

let asset_size = weights.len();

let asset_count = asset_size.try_into().unwrap();

mints is used to calculate the farm 's seed .

for mint in mints.iter() {

 seeds.push(mint.as_ref());

}

farm.asset_infos is filled by iterating over the elements of mints and weights up to asset_size .

for i in 0 .. asset_size{

 total_weight += u128::from(weights[i]);

 farm.asset_infos.push(FarmAssetInfo{

 weight: weights[i],

 mint: mints[i]

 })

 }

SRI-01 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660032902097

However, the length of weights and remaining_accounts / mints are not checked during this initialization process. This

makes it possible that the farm's seed and its asset_infos to not match, making the service unusable.

Recommendation

We recommend including validations ensuring the correct shape of data being used. Multiple variable length Vectors can

easily introduce bugs, if the program invariants are not checked.

Alleviation

[Certik] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

SRI-01 HAWKSIGHT

SRI-02 TERRA'S UST SHOULD NOT BE USED AS A STABLE COIN

Category Severity Location Status

Logical

Issue
Medium

programs/index-yield-farming/src/constants.rs: 27~28; programs/index-yi

eld-farming/src/processors.rs: 458~459, 465~466, 537~538, 544~545
Resolved

Description

Note that with the UST price now below $0.05, and no longer has the role of a stable coin. This may easily affect

functionality of UST in the project.

pub const UST_MAINNET: Pubkey = static_pubkey::static_pubkey!

("9vMJfxuKxXBoEa7rM12mYLMwTacLMLDJqHozw96WQL8i");

pub const STABLE_MINTS: [Pubkey; 2] = [USDC_MAINNET, UST_MAINNET];

Recommendation

The current price of UST does not represent the properties of a stable token. We recommend re-confirming UST using UST

as a dependency will not cause any regressions or future problems. If it does, it should be removed from as a dependency.

Alleviation

[Certik] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

SRI-02 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660797037160

SRI-03 MISSING VALIDATION FOR FarmRewardInfo::update AND

ChangeTokenPerSecondMulti::change_token_per_second

Category Severity Location Status

Control

Flow
Medium

programs/index-yield-farming/src/processors.rs: 157, 764, 814, 927; prog

rams/index-yield-farming/src/states.rs: 62
Resolved

Description

The function change_token_per_second updates the farms token_per_second parameter. The function provides no

validation for when the function should be called.

impl<'info> ChangeTokenPerSecondMulti<'info>{

 pub fn change_token_per_second(&mut self,

 token_per_seconds: Vec<u128>

) -> Result<()> {

 let farm = &mut self.farm;

 let farm_key = farm.key();

 farm.validate_address(farm_key)?;

 let asset_count:u8 = token_per_seconds.len().try_into().unwrap();

 require!(asset_count == farm.asset_count, ErrorCode::InvalidAssetCount);

 let mut index:usize = 0;

 for token_per_second in token_per_seconds.iter() {

 farm.reward_infos[index].token_per_second = *token_per_second;

 index += 1;

 }

 Ok(())

 }

}

In the state.rs , the update() function will calculate the rewards that have been generated for a farm.

SRI-03 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1661282650506

 pub fn update<'info>(&mut self, clock: &Sysvar<'info, Clock>) -> Result<()> {

 let seconds = u128::try_from(

 clock

 .unix_timestamp

 .checked_sub(self.last_reward_time)

 .unwrap(),

)

 .unwrap();

 let mut reward_per_share: u128 = 0;

 if self.amount > 0 && seconds > 0 {

 reward_per_share = u128::from(self.token_per_second)

 .checked_mul(seconds)

 .unwrap()

 .checked_mul(ACC_PRECISION)

 .unwrap()

 .checked_div(u128::from(self.amount))

 .unwrap();

 }

 self.acc_reward_per_share = self

 .acc_reward_per_share

 .checked_add(reward_per_share)

 .unwrap();

 self.last_reward_time = clock.unix_timestamp;

 Ok(())

 }

Neither update nor change_token_per_second have any validation for when token_per_second should be changed. In

practice, this could mean someone calling change_token_per_second prior to when they are supposed to, which would

result in unexpected results when calling update . The logic of when token_per_second should change is totally off-chain

and in the hands of the owner, without any validation. Both human error and malicious intent are risks with the current

architecture of this function.

Recommendation

We recommend adding validation logic to the functions to ensure all changes to tokens_per_second happen as expected.

Ideally, reward structures should be encoded on-chain.

Alleviation

[Certik] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

SRI-03 HAWKSIGHT

SRI-04 LACK OF Asset LENGTH LIMIT CHECK

Category Severity Location Status

Logical

Issue
Minor

programs/index-yield-farming/src/constants.rs: 13~14; programs/index-yield

-farming/src/processors.rs: 125~131
Resolved

Description

MAX_ASSET_COUNT is used to determine the total size that is to be allocated for accounts in

create_or_allocate_account_raw .

pub const MAX_ASSET_COUNT:usize = 10;

However, when this upper limit is not checked when allocating asset_infos in farm . This may result in the allocated

space of the account being depleted.

for i in 0..asset_size {

 total_weight += u128::from(weights[i]);

 farm.asset_infos.push(FarmAssetInfo {

 weight: weights[i],

 mint: mints[i],

 })

 }

Recommendation

We recommend ensuring that the allocated account space cannot be unexpectedly used up.

Alleviation

[Certik] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

SRI-04 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660711829597

SRI-05 LACK OF MINT VALIDATION FOR USER TOKEN ACCOUNTS

Category Severity Location Status

Logical

Issue
Minor

programs/index-yield-farming/src/contexts.rs: 461~468; programs/index-yiel

d-farming/src/processors.rs: 372, 458, 465, 473, 622~624, 680~682, 727~7

28, 792, 854; programs/index-yield-farming/src/utils.rs: 582~597, 601~616

Resolved

Description

Mint is the only basis for identifying different types of tokens in Solana, and it is important to make sure that the mint in the

a given Token Accounts data, which is input by the user, is correct.

The current program only checks whether the address of the Token Account is constructed by the right seeds and program

id, via the check_token_account function.

It is best practice to include mint and ownership checks when interacting with the SPL Token program.

For example, a validation that guarantees the Token Accounts mint address is the same as the one expected in the

strategy .

require!(token_account.mint == strategy.src_mint, ErrorCode::CustomErrorCode);

This would guarantee the token account was not created incorrectly.

Recommendation

We recommend adding a check for mint and owner in token_account's data, instead of just checking the Pubkey

generated by seeds , bump and program_id .

Alleviation

[Certik] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

SRI-05 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1661001701767

COE-01 REDUCE THE USE OF std:mem:size_of()

Category Severity Location Status

Language

Specific
Informational

programs/index-yield-farming/src/contexts.rs: 71, 206, 256~

257
Resolved

Description

mem::size_of<T>() should be used for size calculations with caution. Borsch will always serialize an option as 1 byte for

the variant identifier and then additional x bytes for the content if it's Some. However, Rust uses null-pointer optimization to

make Option's variant identifier 0 bytes when it can, so an option is sometimes just as big as its contents, such as with

Sign .

Recommendation

We recommend calculating the space in such situations manually, as this can prevent future problems in the future.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

COE-01 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659526259001
https://doc.rust-lang.org/std/mem/fn.size_of.html
https://www.anchor-lang.com/docs/space

COE-02 TYPO

Category Severity Location Status

Coding

Style
Informational

programs/index-yield-farming/src/contexts.rs: 103, 105, 108, 111, 11

4, 117, 123, 127, 166, 218, 221, 327, 508
Resolved

Description

The comment includes a spelling mistake of further .

Recommendation

We recommend fixing typos in comments.

Alleviation

[Certik] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

COE-02 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660587580133

LIR-02 INCORRECT USE OF '_' SYNTAX FOR UNUSED VARIABLE

Category Severity Location Status

Coding

Style
Informational

programs/index-yield-farming/src/lib.rs: 33, 40, 48, 64, 71, 7

8, 87, 94, 104, 111, 117, 125, 133, 139, 146, 151, 158, 164
Partially Resolved

Description

In Rust, it is standard practice to prefix unused parameters with _ . However _ctx is used in all the referenced functions.

Recommendation

We recommend following standard Rust coding style.

Alleviation

[Certik] : The team heeded the advice and partially resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7 >.

LIR-02 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1661341064501

PRC-06 SIMPLIFIED IMPLEMENTATION OF index IN LOOP

Category Severity Location Status

Coding

Style
Informational

programs/index-yield-farming/src/processors.rs: 170~173, 341~3

51
Resolved

Description

The code in the following loop uses index , but it can be further simplified.

341 for asset_info in farm.asset_infos.iter(){

342 user.asset_infos[index].last_amount = u128::from(new_amount)

343 .checked_mul(u128::from(asset_info.weight)).unwrap()

344 .checked_div(farm.total_weight).unwrap()

345 .try_into().unwrap();

346 user.asset_infos[index].last_action = Action::FundAction as u8;

347

348 require!(rest_amount >= user.asset_infos[index].last_amount,

ErrorCode::IntegerUnderflow);

349 rest_amount =

rest_amount.checked_sub(user.asset_infos[index].last_amount).unwrap();

350 index += 1;

351 }

 for token_per_second in token_per_seconds.iter() {

 farm.reward_infos[index].token_per_second = *token_per_second;

 index += 1;

 }

Recommendation

Consider using Rusts enumerate functionality to reduce the need for an additional mutable variable.

for (index, asset_info) in farm.asset_infos.iter().enumerate()

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

PRC-06 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659437669506
https://doc.rust-lang.org/std/iter/struct.Enumerate.html

PRC-07 ADD NON-ZERO CHECK FOR total_weight

Category Severity Location Status

Logical Issue Informational programs/index-yield-farming/src/processors.rs: 133~134 Resolved

Description

total_weight will be used in the future to assign amount to different asset_info.last_amount .

user.asset_infos[index].last_amount = u128::from(new_amount)

 .checked_mul(u128::from(asset_info.weight))

 .unwrap()

 .checked_div(farm.total_weight)

 .unwrap()

 .try_into()

 .unwrap();

But the instruction doesn't have a validation over the weights and the total weight. It is important to make sure that

total_weight is not equal to 0 in order to prevent the construction of unavailable farm accounts.

 pub fn create_farm(&mut self,

 ...

) -> Result<()> {

 for i in 0 .. asset_size{

 total_weight += u128::from(weights[i]);

 ...

 }

 farm.total_weight = total_weight;

 }

Recommendation

We suggest adding a check in create_farm that total_weight is not equal to zero.

Alleviation

[Certik] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

PRC-07 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660584222726

PRC-08 THIRD PARTY DEPENDENCIES

Category Severity Location Status

Volatile Code Informational programs/index-yield-farming/src/processors.rs: 486~500 Acknowledged

Description

The contract is serving as the underlying entity to interact with third party QuarryProtocol , spl-swap and stable-swap

protocols. The scope of the audit treats 3rd party entities as black boxes and assume their functional correctness. However,

in the real world, 3rd parties can be compromised and this may lead to lost or stolen assets. In addition, upgrades of 3rd

parties can possibly create severe impacts, such as increasing fees of 3rd parties, migrating to new LP pools, etc.

Recommendation

We understand that the business logic of Hawksight requires interaction with QuarryProtocol , spl-swap and stable-

swap etc. We encourage the team to constantly monitor the statuses of 3rd parties to mitigate the side effects when

unexpected activities are observed. We recommend including rigorous tests. This will help identify when there are breaking

changes in third party libraries. See Lack of Tests finding.

Alleviation

[Hawksight] : we acknowledged and we'll continue to monitor 3rd party contract integrations.

PRC-08 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660584515651

PRC-09 last_amount NOT RESET TO ZERO

Category Severity Location Status

Coding Style Informational programs/index-yield-farming/src/processors.rs: 424, 925, 925 Resolved

Description

After withdrawing reward, the user's last_action is set as FinishAction , however the users last_amount is not reset

to 0 after processing. For comparison, stake_to_farm() and redeem_stable_token() , after a FinishAction reset the

last_amount to zero. This could cause undefined behavior in the future.

For example

919 pub fn withdraw_reward(&mut self) -> Result<()> {

920 ...

921 for asset_index in 0..usize::from(farm.asset_count) {

922 ...

923 user_asset.calculate_reward_debt(&farm_reward)?;

924 user_asset.last_action = Action::FinishAction as u8;

925 user_asset.last_amount = 0; // reset as zero before FinishAction

926 }

927 ...

928 }

929

Recommendation

We recommend confirming the last_amount should be set to 0 after the FinishAction in withdraw_reward() .

Alleviation

[Certik] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

PRC-09 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660879458316

SRI-07 UNNECESSARY & REFERENCE

Category Severity Location Status

Coding

Style
Informational

programs/index-yield-farming/src/processors.rs: 83, 96, 765, 770, 8

15, 820, 928, 933; programs/index-yield-farming/src/states.rs: 121;

programs/index-yield-farming/src/utils.rs: 118~119, 130, 136, 619

Resolved

Description

The references on the linked lines would be dereferenced immediately by the compiler, so the borrow operations are

unnecessary.

Recommendation

We suggest that the receiver of the expression borrows the expression.

For example:

Pubkey::find_program_address(&seeds, &program_id);

could be written as

Pubkey::find_program_address(seeds, &program_id);

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

SRI-07 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659436529673

SRI-08 UNNECESSARY CONVERSION TO THE SAME TYPE

Category Severity Location Status

Coding

Style
Informational

programs/index-yield-farming/src/processors.rs: 319, 328, 337, 403,

412, 421, 949, 959, 970; programs/index-yield-farming/src/states.rs:

72, 169

Resolved

Description

The references on the linked lines make unnecessary conversions to the same type.

Recommendation

Statements such as *.try_into() and u128::from() are only necessary when doing type conversions. The linked

functions will compile without the conversions.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

SRI-08 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659437903932

SRI-09 REMOVE COMMENTED CODE

Category Severity Location Status

Coding

Style
Informational

programs/index-yield-farming/src/contexts.rs: 54~56, 59, 50

5; programs/index-yield-farming/src/errors.rs: 18~19, 33~46

; programs/index-yield-farming/src/events.rs: 15~32, 44~88

; programs/index-yield-farming/src/processors.rs: 63, 109~

110, 183~187, 297, 479, 527~531, 558~560, 567, 579, 590

, 611, 676, 756, 845~847, 868~870; programs/index-yield-f

arming/src/states.rs: 198~202; programs/index-yield-farmin

g/src/utils.rs: 25, 38~45, 230~272, 321, 326, 356, 499~501,

540~541, 609~610

Partially Resolved

Description

The linked statements do not affect the functionality of the codebase and appear to be either leftovers from test code or older

functionality.

Recommendation

We advise all code comments are removed in production code before deployment.

Alleviation

[CertiK] : The team heeded the advice and partially resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

SRI-09 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659517695038

SRI-10 UNNECESSARY ACCOUNT

Category Severity Location Status

Coding

Style
Informational

programs/index-yield-farming/src/contexts.rs: 355~437; programs/in

dex-yield-farming/src/processors.rs: 281~282
Resolved

Description

The CreateUserToken struct declares a strategy account, however the only field used in that account is the token mint.

Passing around unnecessary data can increase complexity of the program, as well as computational requirements.

pub struct CreateUserToken<'info> {

 #[account(

 seeds = [

 b"saber-farm-strategy".as_ref(),

 strategy.token_mint.as_ref(),

 strategy.src_mint.as_ref(),

 strategy.dst_mint.as_ref(),

 strategy.lp_mint.as_ref(),

 strategy.spl_swap.as_ref(),

 strategy.saber_swap.as_ref(),

 strategy.quarry.as_ref(),

],

 bump,

)]

 pub strategy: Account<'info, SaberFarmStrategy>,

 // ...

}

 pub fn create_user_token(&mut self) -> Result<()> {

 let farm = &mut self.farm;

 let strategy = &mut self.strategy;

 let farm_key = farm.key();

 farm.validate_address(farm_key)?;

 farm.find_asset(strategy.token_mint)?; // Used here

 Ok(())

 }

SRI-10 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660582356519

Recommendation

We recommend reviewing the design of this code path. Reducing code complexity reduces the risk of bugs and improves

compute utilization.

Alleviation

[Certik] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

SRI-10 HAWKSIGHT

STT-01 SIMPLIFIABLE require OPERATION

Category Severity Location Status

Coding Style Informational programs/index-yield-farming/src/states.rs: 137~138 Resolved

Description

In require! macro, checking the x == true expression is redundant.

require!(found == true, ErrorCode::AssetNotFound);

Recommendation

We suggest using the following example to simplify the code.

require!(found, ErrorCode::AssetNotFound);

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

STT-01 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659437376987

UTL-01 UNNECESSARY return STATEMENT

Category Severity Location Status

Coding Style Informational programs/index-yield-farming/src/utils.rs: 592~593, 621 Resolved

Description

There is an unnecessary return statement in the current code base.

if exp_token_address != address {

 return

Err(Error::ProgramError(ProgramErrorWithOrigin::from(ProgramError::InvalidArgument))

);

}

Recommendation

The Rust standard syntax for returning from a function is to not add a ';' to the end of the line. We recommend following

standard Rust code styles.

In this case, the line could be simplified to:

if exp_token_address != address {

Err(Error::ProgramError(ProgramErrorWithOrigin::from(ProgramError::InvalidArgument))

)

}

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

UTL-01 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659435480945

UTL-02 UNUSED VARIABLE

Category Severity Location Status

Coding Style Informational programs/index-yield-farming/src/utils.rs: 550 Resolved

Description

The variable _res is declared but is not used in the code logic.

550 let _res = redeem_all_tokens_from_mint_proxy(CpiContext::new(...));

Recommendation

All unused variables should be removed from production code before deploying.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

UTL-02 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659435758607

UTL-03 UNNECESSARY RE-SLICING

Category Severity Location Status

Coding

Style
Informational

programs/index-yield-farming/src/utils.rs: 222, 333, 393, 435, 479,

546, 570
Resolved

Description

In the utils.rs , authority_seeds was re-sliced, which was unnecessary:

with_signer(&[&authority_seeds[..]])

Recommendation

Since the authority_seeds value is already a slice, we recommended passing it by value instead of re-slicing it for the

entire range:

with_signer(&[authority_seeds])

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

UTL-03 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1659436997725

UTL-04 OPTIMIZE creator_fee CALCULATION FOR IMPROVED

PRECISION

Category Severity Location Status

Logical Issue Informational programs/index-yield-farming/src/utils.rs: 79~99 Resolved

Description

The current computation of creator_fee does not conform to the multiply first, divide later specification. This will result in a

loss of precision in the final value.

 let fee_amount = u128::from(input_amount)

 .checked_mul(fee_pct)

 .unwrap()

 .checked_div(FEE_DENOMINATOR)

 .unwrap();

 let creator_fee = fee_amount

 .checked_mul(CREATOR_FEE_WEIGHT)

 .unwrap()

 .checked_div(...).unwrap()

 .unwrap();

Recommendation

In order to improve the accuracy of the calculation of the creator_fee , we suggest to calculate creator_fee directly.

 let creator_fee = u128::from(input_amount)

 .checked_mul(fee_pct)

 .unwrap()

 .checked_mul(CREATOR_FEE_WEIGHT)

 .unwrap()

 .checked_div(FEE_DENOMINATOR)

 .unwrap()

 .checked_div(...).unwrap())

 .unwrap();

Alleviation

[Certik] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

UTL-04 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660586498944

OPTIMIZATIONS HAWKSIGHT

ID Title Category Severity Status

SRI-06
Removal Of Unnecessary Checks For Computing

Budget Optimization

Gas

Optimization
Optimization Resolved

OPTIMIZATIONS HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660587343548

SRI-06 REMOVAL OF UNNECESSARY CHECKS FOR COMPUTING
BUDGET OPTIMIZATION

Category Severity Location Status

Gas

Optimization
Optimization

programs/index-yield-farming/src/contexts.rs: 84, 97, 453, 501; pr

ograms/index-yield-farming/src/processors.rs: 342~350, 372~373
Resolved

Description

There are some unnecessary checks in the current code. For example：

Already checked by check_sub

user.asset_infos[index].last_amount = u128::from(new_amount)

 .checked_mul(u128::from(asset_info.weight))

 .unwrap()

 .checked_div(farm.total_weight)

 .unwrap()

 .try_into()

 .unwrap();

 user.asset_infos[index].last_action = Action::FundAction as u8;

 require!(

 rest_amount >= user.asset_infos[index].last_amount,

 ErrorCode::IntegerUnderflow

);//Duplicate check

 rest_amount = rest_amount

 .checked_sub(user.asset_infos[index].last_amount)

 .unwrap();

 index += 1;

Already checked by #[account(mut,seeds = [..], bump)]

 check_token_account(

 self.user_pda_stable_token.key(),

 farm.stable_mint,

 farm_key,

 user_key,

)?;

Already checked by Program<'info, Token>

SRI-06 HAWKSIGHT

https://accelerator.audit.certikpowered.info/project/494a5f00-b573-11ec-975a-d351eeb62b0e/report?fid=1660587343548

#[account(constraint = token_program.key == &token::ID)]

Recommendation

We recommend removing duplicate checks.

Alleviation

[Certik] : The team heeded the advice and resolved the finding in the commit hash

<b70e6a8cc80807ac5af92700da6600447242bce7>.

SRI-06 HAWKSIGHT

APPENDIX HAWKSIGHT

Details on Formal Verification

Technical description

Some Solidity smart contracts from this project have been formally verified using symbolic model checking. Each such

contract was compiled into a mathematical model which reflects all its possible behaviors with respect to the property. The

model takes into account the semantics of the Solidity instructions found in the contract. All verification results that we report

are based on that model.

The model also formalizes a simplified execution environment of the Ethereum blockchain and a verification harness that

performs the initialization of the contract and all possible interactions with the contract. Initially, the contract state is initialized

non-deterministically (i.e. by arbitrary values) and over-approximates the reachable state space of the contract throughout

any actual deployment on chain. All valid results thus carry over to the contract's behavior in arbitrary states after it has been

deployed.

Assumptions and simplifications

The following assumptions and simplifications apply to our model:

Gas consumption is not taken into account, i.e. we assume that executions do not terminate prematurely because

they run out of gas.

The contract's state variables are non-deterministically initialized before invocation of any of those functions. That

ignores contract invariants and may lead to false positives. It is, however, a safe over-approximation.

The verification engine reasons about unbounded integers. Machine arithmetic is modeled as operations on the

congruence classes arising from the bit-width of the underlying numeric type. This ensures that over- and underflow

characteristics are faithfully represented.

Certain low-level calls and inline assembly are not supported and may lead to an ERC-20 token contract not being

formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for property definitions

All properties are expressed in linear temporal logic (LTL). For that matter, we treat each invocation of and each return from a

public or an external function as a discrete time steps. Our analysis reasons about the contract's state upon entering and

upon leaving public or external functions.

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

started(f, [cond])
Indicates an invocation of contract function f within a state satisfying formula cond .

APPENDIX HAWKSIGHT

willSucceed(f, [cond])
Indicates an invocation of contract function f within a state satisfying formula cond

and considers only those executions that do not revert.

finished(f, [cond])
Indicates that execution returns from contract function f in a state satisfying formula

cond . Here, formula cond may refer to the contract's state variables and to the value they had upon entering the

function (using the old function).

reverted(f, [cond])
Indicates that execution of contract function f was interrupted by an exception in a

contract state satisfying formula cond .

The verification performed in this audit operates on a harness that non-deterministically invokes a function of the contract's

public or external interface. All formulas are analyzed w.r.t. the trace that corresponds to this function invocation.

Description of ERC-20 Properties

The specifications are designed such that they capture the desired and admissible behaviors of the ERC-20 functions

transfer , transferFrom , approve , allowance , balanceOf , and totalSupply .

In the following, we list those property specifications.

Properties for ERC-20 function transfer

erc20-transfer-revert-zero

Function transfer Prevents Transfers to the Zero Address.

Any call of the form transfer(recipient, amount) must fail if the recipient address is the zero address.

Specification:

 [](started(contract.transfer(to, value), to == address(0))

 ==> <>(reverted(contract.transfer) || finished(contract.transfer(to, value),

 !return)))

erc20-transfer-succeed-normal

Function transfer Succeeds on Admissible Non-self Transfers.

All invocations of the form transfer(recipient, amount) must succeed and return true if

the recipient address is not the zero address,

amount does not exceed the balance of address msg.sender ,

transferring amount to the recipient address does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call.

Specification:

APPENDIX HAWKSIGHT

 [](started(contract.transfer(to, value), to != address(0)

 && to != msg.sender && value >= 0 && value <= _balances[msg.sender]

 && _balances[to] + value <= type(uint256).max && _balances[to] >= 0

 && _balances[msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return)))

erc20-transfer-succeed-self

Function transfer Succeeds on Admissible Self Transfers.

All self-transfers, i.e. invocations of the form transfer(recipient, amount) where the recipient address equals the

address in msg.sender must succeed and return true if

the value in amount does not exceed the balance of msg.sender and

the supplied gas suffices to complete the call.

Specification:

 [](started(contract.transfer(to, value), to != address(0)

 && to == msg.sender && value >= 0 && value <= _balances[msg.sender]

 && _balances[msg.sender] >= 0

 && _balances[msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return)))

erc20-transfer-correct-amount

Function transfer Transfers the Correct Amount in Non-self Transfers.

All non-reverting invocations of transfer(recipient, amount) that return true must subtract the value in amount from

the balance of msg.sender and add the same value to the balance of the recipient address.

Specification:

 [](willSucceed(contract.transfer(to, value), to != msg.sender

 && _balances[to] >= 0 && value >= 0

 && _balances[to] + value <= type(uint256).max

 && _balances[msg.sender] >= 0 && _balances[msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return

 ==> _balances[msg.sender] == old(_balances[msg.sender]) - value

 && _balances[to] == old(_balances[to]) + value)))

erc20-transfer-correct-amount-self

Function transfer Transfers the Correct Amount in Self Transfers.

All non-reverting invocations of transfer(recipient, amount) that return true and where the recipient address

equals msg.sender (i.e. self-transfers) must not change the balance of address msg.sender .

APPENDIX HAWKSIGHT

Specification:

 [](willSucceed(contract.transfer(to, value), to == msg.sender

 && _balances[to] >= 0 && _balances[to] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return

 ==> _balances[to] == old(_balances[to]))))

erc20-transfer-change-state

Function transfer Has No Unexpected State Changes.

All non-reverting invocations of transfer(recipient, amount) that return true must only modify the balance entries of

the msg.sender and the recipient addresses.

Specification:

 [](willSucceed(contract.transfer(to, value), p1 != msg.sender && p1 != to)

 ==> <>(finished(contract.transfer(to, value), return

 ==> (_totalSupply == old(_totalSupply) && _allowances == old(_allowances)

 && _balances[p1] == old(_balances[p1])))))

erc20-transfer-exceed-balance

Function transfer Fails if Requested Amount Exceeds Available Balance.

Any transfer of an amount of tokens that exceeds the balance of msg.sender must fail.

Specification:

 [](started(contract.transfer(to, value), value > _balances[msg.sender]

 && _balances[msg.sender] >= 0 && value <= type(uint256).max)

 ==> <>(reverted(contract.transfer) || finished(contract.transfer(to, value),

 !return)))

erc20-transfer-recipient-overflow

Function transfer Prevents Overflows in the Recipient's Balance.

Any invocation of transfer(recipient, amount) must fail if it causes the balance of the recipient address to overflow.

Specification:

APPENDIX HAWKSIGHT

 [](started(contract.transfer(to, value), to != msg.sender

 && _balances[to] + value > type(uint256).max

 && _balances[to] >= 0 && _balances[to] <= type(uint256).max

 && _balances[msg.sender] <= type(uint256).max

 && value > 0 && value <= _balances[msg.sender])

 ==> <>(reverted(contract.transfer) || finished(contract.transfer(to, value),

 !return) || finished(contract.transfer(to, value), _balances[to]

 > old(_balances[to]) + value - type(uint256).max - 1)))

erc20-transfer-false

If Function transfer Returns false , the Contract State Has Not Been Changed.

If the transfer function in contract contract fails by returning false , it must undo all state changes it incurred before

returning to the caller.

Specification:

 [](willSucceed(contract.transfer(to, value))

 ==> <>(finished(contract.transfer(to, value), !return]

 ==> (_balances == old(_balances) && _totalSupply == old(_totalSupply)

 && _allowances == old(_allowances)))))

erc20-transfer-never-return-false

Function transfe Never Returns false .

The transfer function must never return false to signal a failure.

Specification:

 [](!(finished(contract.transfer, !return)))

Properties for ERC-20 function transferFrom

erc20-transferfrom-revert-from-zero

Function transferFrom Fails for Transfers From the Zero Address.

All calls of the form transferFrom(from, dest, amount) where the from address is zero, must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), from == address(0))

 ==> <>(reverted(contract.transferFrom) || finished(contract.transferFrom,

 !return)))

APPENDIX HAWKSIGHT

erc20-transferfrom-revert-to-zero

Function transferFrom Fails for Transfers To the Zero Address.

All calls of the form transferFrom(from, dest, amount) where the dest address is zero, must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), to == address(0))

 ==> <>(reverted(contract.transferFrom) || finished(contract.transferFrom,

 !return)))

erc20-transferfrom-succeed-normal

Function transferFrom Succeeds on Admissible Non-self Transfers.
All invocations of transferFrom(from, dest,

amount) must succeed and return true if

the value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from ,

transferring a value of amount to the address in dest does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call.

Specification:

 [](started(contract.transferFrom(from, to, value), from != address(0)

 && to != address(0) && from != to && value <= _balances[from]

 && value <= _allowances[from][msg.sender]

 && _balances[to] + value <= type(uint256).max

 && value >= 0 && _balances[to] >= 0 && _balances[from] >= 0

 && _balances[from] <= type(uint256).max

 && _allowances[from][msg.sender] >= 0

 && _allowances[from][msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return)))

erc20-transferfrom-succeed-self

Function transferFrom Succeeds on Admissible Self Transfers.

All invocations of transferFrom(from, dest, amount) where the dest address equals the from address (i.e. self-

transfers) must succeed and return true if:

The value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from , and

the supplied gas suffices to complete the call.

Specification:

APPENDIX HAWKSIGHT

 [](started(contract.transferFrom(from, to, value), from != address(0)

 && from == to && value <= _balances[from]

 && value <= _allowances[from][msg.sender]

 && value >= 0 && _balances[from] <= type(uint256).max

 && _allowances[from][msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return)))

erc20-transferfrom-correct-amount

Function transferFrom Transfers the Correct Amount in Non-self Transfers.

All invocations of transferFrom(from, dest, amount) that succeed and that return true subtract the value in amount

from the balance of address from and add the same value to the balance of address dest .

Specification:

 [](willSucceed(contract.transferFrom(from, to, value), from != to && value >= 0

 && _balances[from] >= 0 && _balances[from] <= type(uint256).max

 && _balances[to] >= 0 && _balances[to] + value <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return

 ==> _balances[from] == old(_balances[from]) - value

 && _balances[to] == old(_balances[to] + value))))

erc20-transferfrom-correct-amount-self

Function transferFrom Performs Self Transfers Correctly.

All non-reverting invocations of transferFrom(from, dest, amount) that return true and where the address in from

equals the address in dest (i.e. self-transfers) do not change the balance entry of the from address (which equals

dest).

Specification:

 [](willSucceed(contract.transferFrom(from, to, value), from == to

 && value >= 0 && value <= type(uint256).max && _balances[from] >= 0

 && _balances[from] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return

 ==> _balances[from] == old(_balances[from]))))

erc20-transferfrom-correct-allowance

Function transferFrom Updated the Allowance Correctly.

All non-reverting invocations of transferFrom(from, dest, amount) that return true must decrease the allowance for

address msg.sender over address from by the value in amount .

Specification:

APPENDIX HAWKSIGHT

 [](willSucceed(contract.transferFrom(from, to, value), value >= 0

 && value <= type(uint256).max && _balances[from] >= 0

 && _balances[from] <= type(uint256).max && _balances[to] >= 0

 && _balances[to] <= type(uint256).max && _allowances[from][msg.sender] >= 0

 && _allowances[from][msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return

 ==> ((_allowances[from][msg.sender]

 == old(_allowances[from][msg.sender]) - value)

 || (_allowances[from][msg.sender]

 == old(_allowances[from][msg.sender])

 && (from == msg.sender

 || old(_allowances[from][msg.sender])

 == type(uint256).max))))))

erc20-transferfrom-change-state

Function transferFrom Has No Unexpected State Changes.

All non-reverting invocations of transferFrom(from, dest, amount) that return true may only modify the following state

variables:

The balance entry for the address in dest ,

The balance entry for the address in from ,

The allowance for the address in msg.sender for the address in from .
Specification:

 [](willSucceed(contract.transferFrom(from, to, amount), p1 != from && p1 != to

 && (p2 != from || p3 != msg.sender))

 ==> <>(finished(contract.transferFrom(from, to, amount), return

 ==> (_totalSupply == old(_totalSupply) && _balances[p1] == old(_balances[p1])

 && _allowances[p2][p3] == old(_allowances[p2][p3])))))

erc20-transferfrom-fail-exceed-balance

Function transferFrom Fails if the Requested Amount Exceeds the Available Balance.

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the balance of address

from must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), value > _balances[from]

 && _balances[from] >= 0 && _balances[from] <= type(uint256).max)

 ==> <>(reverted(contract.transferFrom)

 || finished(contract.transferFrom, !return)))

erc20-transferfrom-fail-exceed-allowance

APPENDIX HAWKSIGHT

Function transferFrom Fails if the Requested Amount Exceeds the Available Allowance.

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the allowance of address

msg.sender must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), value > _allowances[from]

[msg.sender]

 && _allowances[from][msg.sender] >= 0 && value <= type(uint256).max)

 ==> <>(reverted(contract.transferFrom)

 || finished(contract.transferFrom(from, to, value), !return)

 || finished(contract.transferFrom(from, to, value), return

 && (msg.sender == from

 || _allowances[from][msg.sender] == type(uint256).max))))

erc20-transferfrom-fail-recipient-overflow

Function transferFrom Prevents Overflows in the Recipient's Balance.

Any call of transferFrom(from, dest, amount) with a value in amount whose transfer would cause an overflow of the

balance of address dest must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), from != to

 && _balances[to] + value > type(uint256).max && value <= type(uint256).max

 && _balances[to] >= 0 && _balances[to] <= type(uint256).max)

 ==> <>(reverted(contract.transferFrom)

 || finished(contract.transferFrom(from, to, value), !return)

 || finished(contract.transferFrom(from, to, value), _balances[to]

 > old(_balances[to]) + value - type(uint256).max - 1)))

erc20-transferfrom-false

If Function transferFrom Returns false , the Contract's State Has Not Been Changed.

If transferFrom returns false to signal a failure, it must undo all incurred state changes before returning to the caller.

Specification:

 [](willSucceed(contract.transfer(to, value))

 ==> <>(finished(contract.transfer(to, value), !return

 ==> (_balances == old(_balances) && _totalSupply == old(_totalSupply)

 && _allowances == old(_allowances)))))

erc20-transferfrom-never-return-false

APPENDIX HAWKSIGHT

Function transferFrom Never Returns false .

The transferFrom function must never return false .

Specification:

 [](!(finished(contract.transferFrom, !return)))

Properties related to function totalSupply

erc20-totalsupply-succeed-always

Function totalSupply Always Succeeds.

The function totalSupply must always succeeds, assuming that its execution does not run out of gas.

Specification:

 [](started(contract.totalSupply) ==> <>(finished(contract.totalSupply)))

erc20-totalsupply-correct-value

Function totalSupply Returns the Value of the Corresponding State Variable.

The totalSupply function must return the value that is held in the corresponding state variable of contract contract.

Specification:

 [](willSucceed(contract.totalSupply)

 ==> <>(finished(contract.totalSupply, return == _totalSupply)))

erc20-totalsupply-change-state

Function totalSupply Does Not Change the Contract's State.

The totalSupply function in contract contract must not change any state variables.

Specification:

 [](willSucceed(contract.totalSupply)

 ==> <>(finished(contract.totalSupply, _totalSupply == old(_totalSupply)

 && _balances == old(_balances) && _allowances == old(_allowances))))

Properties related to function balanceOf

erc20-balanceof-succeed-always

Function balanceOf Always Succeeds.

APPENDIX HAWKSIGHT

Function balanceOf must always succeed if it does not run out of gas.

Specification:

 [](started(contract.balanceOf) ==> <>(finished(contract.balanceOf)))

erc20-balanceof-correct-value

Function balanceOf Returns the Correct Value.

Invocations of balanceOf(owner) must return the value that is held in the contract's balance mapping for address owner .

Specification:

 [](willSucceed(contract.balanceOf)

 ==> <>(finished(contract.balanceOf(owner), return == _balances[owner])))

erc20-balanceof-change-state

Function balanceOf Does Not Change the Contract's State.

Function balanceOf must not change any of the contract's state variables.

Specification:

 [](willSucceed(contract.balanceOf)

 ==> <>(finished(contract.balanceOf(owner), _totalSupply == old(_totalSupply)

 && _balances == old(_balances)

 && _allowances == old(_allowances))))

Properties related to function allowance

erc20-allowance-succeed-always

Function allowance Always Succeeds.

Function allowance must always succeed, assuming that its execution does not run out of gas.

Specification:

 [](started(contract.allowance) ==> <>(finished(contract.allowance)))

erc20-allowance-correct-value

Function allowance Returns Correct Value.

Invocations of allowance(owner, spender) must return the allowance that address spender has over tokens held by

address owner .

APPENDIX HAWKSIGHT

Specification:

 [](willSucceed(contract.allowance(owner, spender))

 ==> <>(finished(contract.allowance(owner, spender),

 return == _allowances[owner][spender])))

erc20-allowance-change-state

Function allowance Does Not Change the Contract's State.

Function allowance must not change any of the contract's state variables.

Specification:

 [](willSucceed(contract.allowance(owner, spender))

 ==> <>(finished(contract.allowance(owner, spender),

 _totalSupply == old(_totalSupply) && _balances == old(_balances)

 && _allowances == old(_allowances))))

Properties related to function approve

erc20-approve-revert-zero

Function approve Prevents Giving Approvals For the Zero Address.

All calls of the form approve(spender, amount) must fail if the address in spender is the zero address.

Specification:

 [](started(contract.approve(spender, value), spender == address(0))

 ==> <>(reverted(contract.approve)

 || finished(contract.approve(spender, value), !return)))

erc20-approve-succeed-normal

Function approve Succeeds for Admissible Inputs.

All calls of the form approve(spender, amount) must succeed, if

the address in spender is not the zero address and

the execution does not run out of gas.

Specification:

 [](started(contract.approve(spender, value), spender != address(0))

 ==> <>(finished(contract.approve(spender, value), return)))

APPENDIX HAWKSIGHT

erc20-approve-correct-amount

Function approve Updates the Approval Mapping Correctly.

All non-reverting calls of the form approve(spender, amount) that return true must correctly update the allowance

mapping according to the address msg.sender and the values of spender and amount .

Specification:

 [](willSucceed(contract.approve(spender, value), spender != address(0)

 && value >= 0 && value <= type(uint256).max)

 ==> <>(finished(contract.approve(spender, value), return

 ==> _allowances[msg.sender][spender] == value)))

erc20-approve-change-state

Function approve Has No Unexpected State Changes.

All calls of the form approve(spender, amount) must only update the allowance mapping according to the address

msg.sender and the values of spender and amount and incur no other state changes.

Specification:

 [](willSucceed(contract.approve(spender, value), spender != address(0)

 && (p1 != msg.sender || p2 != spender))

 ==> <>(finished(contract.approve(spender, value), return

 ==> _totalSupply == old(_totalSupply) && _balances == old(_balances)

 && _allowances[p1][p2] == old(_allowances[p1][p2]))))

erc20-approve-false

If Function approve Returns false , the Contract's State Has Not Been Changed.

If function approve returns false to signal a failure, it must undo all state changes that it incurred before returning to the

caller.

Specification:

 [](willSucceed(contract.approve(spender, value))

 ==> <>(finished(contract.approve(spender, value), !return

 ==> (_balances == old(_balances) && _totalSupply == old(_totalSupply)

 && _allowances == old(_allowances)))))

erc20-approve-never-return-false

Function approve Never Returns false .

The function approve must never returns false .

APPENDIX HAWKSIGHT

Specification:

 [](!(finished(contract.approve, !return)))

Finding Categories

Categories Description

Centralization

/ Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Control Flow
Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Language

Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private

or delete.

Coding Style
Coding Style findings usually do not affect the generated byte-code but rather comment on how to

make the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX HAWKSIGHT

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with

the Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL

WARRANTIES ARISING FROM COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE

FOREGOING, CERTIK MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE

ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE

USE THEREOF, WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE,

ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE

DISCLAIMER HAWKSIGHT

FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY

KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE

COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS OR SERVICES, OPERATE

WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR

THAT ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME

NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER HAWKSIGHT

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Hawksight Security Assessment CertiK Verified on Sept 28th, 2022 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

